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Foreword

This document contains model solutions to the 2009 STEP Mathematics Paper I. The solu-
tions are fully worked and contain more detail and explanation than would be expected from
candidates. They are intended to help students understand how to answer the questions, and
therefore they are encouraged to attempt them first before looking at these model answers.

To further help them, there are various pieces of Commentary, which are written in a more
conversational style, and are intended to explain some of the thinking behind a particular
choice of approach.

This document also contains a Mark Scheme. This was used by the examiners during the
marking process. It is important to remember that the nature of these questions is such
that there may be multiple acceptable ways of answering them. As in any examination, the
mark scheme was adapted appropriately for these alternative approaches; these adaptations
are not recorded here.

The meanings of the marks are as in the standard GCSE and AS/A2 mark schemes:

• M marks for method

• A marks for correct answers, dependent on gaining the corresponding M mark(s)

• B marks are independent accuracy marks

• (ft) means that incorrect working is followed through

• (dep) means this mark is dependent upon gaining the previous mark

• cao/cso means ‘correct answer/solution only’
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Question 1

A proper factor of an integer N is a positive integer, not 1 or N , that divides N .

(i) Show that 32 × 53 has exactly 10 proper factors.

It is not by accident that this question writes “ 32 × 53” and not “ 1125”: it is aiming to
suggest that it is much more straightforward to think about factors of a number if we are
given its prime factorisation to begin with. Also, note that the question does not ask us to
multiply out the factorisations at any point. In fact, there is no need to even give the factors
explicitly if you do not need to.

Determining the proper factors of 32× 53 is straightforward: any factor must be of the form
3r × 5s with 0 6 r 6 2 and 0 6 s 6 3, giving the factors:

30 × 50 (= 1) (this is not a proper factor)

30 × 51 (= 5)

30 × 52 (= 25)

30 × 53 (= 125)

31 × 50 (= 3)

31 × 51 (= 15)

31 × 52 (= 75)

31 × 53 (= 375)

32 × 50 (= 9)

32 × 51 (= 45)

32 × 52 (= 225)

32 × 53 (= 1125) (this is not a proper factor)

Therefore there are 10 proper factors in total.

Alternatively, we could simply note that there are 3 possible values for the power of 3 (namely
0, 1 and 2) and 4 for the power of 5 (namely 0, 1, 2 and 3), making 3 × 4 = 12 factors.
Of these, two are not proper (1 and the number 32 × 53 itself), leaving 12 − 2 = 10 proper
factors.

Marks

M1: Listing factors of 32 × 53 in a systematic fashion

M1: Rejecting the cases 30 × 50 and 32 × 53

A1 cso: Must clearly demonstrate that all the factors have been found and none
have been forgotten

Alternative approach:

M1: Identifying that factors are of the form 3r × 5s with ranges (not necessarily
correct) for the values of r and s
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M1: Counting the cases as 3× 4 with justification

A1 cso: Justify the exclusion of 2 cases

(i) (cont.)

Show that 32×53 has exactly 10 proper factors. Determine how many other integers
of the form 3m × 5n (where m and n are integers) have exactly 10 proper factors.

Now that we have done this and understood how to count the factors of 32 × 53, we can
answer the second part: the number of proper factors of 3a × 5b is (a + 1)(b + 1) − 2, as
the power of 3 in a factor can be 0, 1, . . . , a, and the power of 5 can be 0, 1, . . . , b. So we
require (a+ 1)(b+ 1)− 2 = 10, or (a+ 1)(b+ 1) = 12. Here are the possibilities:

a+ 1 b+ 1 a b n = 3a × 5b

1 12 0 11 30 × 511

2 6 1 5 31 × 55

3 4 2 3 32 × 53

4 3 3 2 33 × 52

6 2 5 1 35 × 51

12 1 11 0 311 × 50

so there are 6 possibilities in total. This means that there are 5 other integers with the
required properties.

We use these same ideas in part (ii).

Marks

M1: Counting factors of 3a × 5b as (a+ 1)(b+ 1) or ab or similar

A1 cao: Correct counting of proper factors

M1: For deducing (a + 1)(b + 1) = 12 or equivalent (follow through incorrect
count of proper factors, as long as 2 has been subtracted from the whole
count)

M1: Listing possibilities for a + 1 and b + 1, and deducing for a and b (at least
four possibilities needed)

A1: All correct possibilities for a+ 1 and b+ 1

A1 cso: Need to justify somehow that each possibility for a + 1 and b + 1 is
valid; allow the answer of 6 solutions (i.e., don’t penalise for not saying “5 other
integers”)

(ii) Let N be the smallest positive integer that has exactly 426 proper factors. Determine
N , giving your answer in terms of its prime factors.

Following the same ideas as in part (i), let n = 2a×3b×5c×7d×· · · be the prime factorisation
of the positive integer n. (Note that we should use a letter other than N to distinguish our
arbitrary integer from the special one that we seek.)
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Then the number of factors of n is (a+ 1)(b+ 1)(c+ 1)(d+ 1) · · · , and we must subtract 2
to get the number of proper factors. Assuming now that n has 426 proper factors, we must
have

(a+ 1)(b+ 1)(c+ 1)(d+ 1) · · · − 2 = 426,

so
(a+ 1)(b+ 1)(c+ 1)(d+ 1) · · · = 428.

Now we can factorise 428 = 22× 107, and 107 is prime. So the possible factorisations of 428
are 428 = 2 × 214 = 4 × 107 = 2 × 2 × 107, so there can be at most three prime factors
in n. We are seeking the smallest such n, so we choose the smallest possible primes, giving
the smaller ones higher powers and larger ones smaller powers. So the smallest values of n
for each possible factorisation of 428 are as follows:

With 428 = 428: n = 2427

With 428 = 2× 214: n = 2213 × 3
With 428 = 4× 107: n = 2106 × 33

With 428 = 2× 2× 107: n = 2106 × 3× 5

Since we seek the smallest possible value, our answer is clearly 2106 × 3 × 5, as 2107 × 3 >
33 = 27 > 3× 5 = 15.

Marks

SC: If attempt to factorise 426 instead of 428, getting 426 = 2 × 3 × 71, then
candidate can gain those marks indicated with * below.

M1*: Writing n or N as a general product of prime factors (may be implied by
subsequent working or not fully general)

M1*: Counting factors of n in terms of prime factorisation (again, may not
necessarily be fully general)

A1: Deducing 428 factors in total (may be implied by subsequent working)

M1*: Determining possible factorisations of 428 (at least two of them)

M1*: Justifying or mentioning explicitly choosing smallest primes for n

M1*: Justifying or mentioning explicitly allocating smaller primes to higher
powers

M1* dep: For attempting to explicitly determine smallest n for given
factorisations of 428 based on explicit correct reasoning

Either:

A1*: For correct smallest n for at least three factorisations of 428

A1*: For correct smallest n for all four factorisations of 428 (SC: all
five factorisations of 426, being 426 → 2425, 2 × 213 → 2212 × 3,
3× 142→ 2141 × 32, 2× 3× 71→ 271 × 32 × 5, 6× 71→ 271 × 35)

Or:

A1*: For correct smallest n for factorisations 4× 107 and 22 × 107 accompanied
by attempted justification of why 428 = 2× 214 and 428 = 428 will not give
smallest n (SC: same for the factorisations 6× 71 and 2× 3× 71)

A1*: Correct justification of this assertion

M1*: Justification of why the chosen value of n is the smallest
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A1 cao: Correct answer N = 2106 × 3× 5
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Question 2

A curve has the equation
y3 = x3 + a3 + b3 ,

where a and b are positive constants. Show that the tangent to the curve at the point
(−a, b) is

b2y − a2x = a3 + b3 .

Differentiating the equation of the curve with respect to x gives

3y2 dy

dx
= 3x2.

Substituting x = −a and y = b gives 3b2 dy
dx

= 3a2, so dy
dx

= a2/b2. Then the standard
equation of a straight line gives

y − b =
a2

b2
(x+ a),

which easily rearranges into the form b2y − a2x = a3 + b3, as required.

Marks

M1: Reasonable attempt at differentiation wrt x

A1: Correct differentiation

M1: Determination of derivative at (−a, b); must find explicitly in terms of a
and b to get this and the subsequent marks in this part of the question.

M1 dep: Substitution into equation for straight line; must show an essentially
complete correct method for determining the equation of a straight line,
even if there are errors in the algebra

A1 cso: Correctly determining the required form from the above

In the case a = 1 and b = 2, show that the x-coordinates of the points where the tangent
meets the curve satisfy

7x3 − 3x2 − 27x− 17 = 0 .

In the case a = 1, b = 2, the curve has equation y3 = x3 + 9, and the tangent at (−1, 2) has
equation 4y − x = 9. We therefore substitute 4y = x + 9 into y3 = x3 + 9 as follows (after
multiplying by 43):

64y3 = 64x3 + 576

=⇒ (x+ 9)3 = 64x3 + 576

=⇒ x3 + 27x2 + 243x+ 729 = 64x3 + 576

=⇒ 63x3 − 27x2 − 243x− 153 = 0

=⇒ 7x3 − 3x2 − 27x− 17 = 0, on dividing by 9,

and this is the equation required.
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Marks

B1: Explicit equation of curve

B1: Explicit equation of tangent

M1: Substitution of tangent into curve to find intersections

M1: Expanding and simplifying the equation in a useful manner towards the
desired result

A1 cso: Correct deduction of desired result

Hence find positive integers p, q, r and s such that

p3 = q3 + r3 + s3 .

Now our equation looks hard to solve, but we know that there is a solution at x = −1, as
the curve and line are tangent at this point. In fact, since they are tangent, x = −1 must
be a double root. So we can take out a factor of (x+ 1)2 to get

(x+ 1)(7x2 − 10x− 17) = 0

=⇒ (x+ 1)2(7x− 17) = 0.

Thus either x = −1, which we aleady know, or x = 17
7

. Since this point lies on the line
4y − x = 9, the y-coordinate is

(
17
7

+ 9
)
/4 = 20

7
. Thus, as this point also lies on the curve

y3 = x3 + a3 + b3, we have (
20
7

)3
=
(

17
7

)3
+ 13 + 23.

Now multiplying both sides by 73 gives us our required result:

203 = 173 + 73 + 143,

so a solution is p = 20, q = 17, r = 7, s = 14.

Marks

[Note: To gain any marks on this part of the question, the solution must use the
preceding results.]

B1: Noting or otherwise deducing that x = −1 is a solution

M1: Taking out a factor of (x+ 1)

M1: Taking out a second factor of (x+ 1)

A1: Correct factorisation

A1 cao: Determination of x 6= −1

Alternative for the final M1 A1 A1:

M1: Apply the quadratic formula to the quadratic factor

A1: Correct simplification of surd

A1 cao: Determination of x 6= −1

M1: Determination of y-coordinate at x-coordinate found (dependent on
reasonable attempt to find x-coordinate, so at least previous M1 awarded)

A1 ft: Correct y-coordinate (follow through incorrect x-coordinate, x 6= −1)
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M1: Substitute into y3 = x3 + a3 + b3 with a and b written out explicitly

M1: Multiplying through by (denominator)3 to gain integers

A1 cao: Correct solution to question, either the specified one or an integer
multiple thereof; must be deduced from earlier results
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Question 3

(i) By considering the equation x2 + x − a = 0 , show that the equation x = (a − x)
1
2

has one real solution when a > 0 and no real solutions when a < 0.

This looks somewhat confusing at first glance; why might x = (a − x)
1
2 , which can be

rearranged as the given quadratic, only have one solution whereas the quadratic can have
two? But we must remember that this equation involves a square root, and by convention,
this is the positive square root; therefore, real solutions must satisfy both x > 0 and a−x > 0,
even if the quadratic has other solutions in addition.

Consider the equation
x = (a− x)

1
2 . (∗)

If this is true, then squaring gives x2 = a − x, or x2 + x − a = 0. The solutions of this
quadratic are given by

x =
−1±

√
1 + 4a

2
,

and these will be real solutions of (∗) if and only if x > 0 and a− x > 0, that is 0 6 x 6 a.
But as a − x = x2, we will always have a − x > 0 for real solutions of the quadratic, so we
need only check that x > 0. For a solution to (∗), we therefore require the plus sign in the
quadratic formula, and we also need 1 + 4a > 1, so a > 0.

Thus, for a < 0, there are no real solutions to (∗), and for a > 0, x =
(
−1 +

√
1 + 4a

)
/2 is

the unique real solution.

Marks

M1: Deducing the quadratic from (∗)
M1 (indep): Solving the (given) quadratic using the quadratic formula or

otherwise

M1: For both conditions on x (x > 0, a− x > 0)

M1: For deducing that a − x > 0 for all real solutions to the quadratic, or
equivalent argument that a− x > 0 is satisfied for the solutions found

M1: Deducing the sign needed in the quadratic formula, or equivalent argument

A1: Deducing a > 0 needed for real solution

A1 cso: For correctly deduced conclusion (does not require explicit solution to
equation)

(i) (cont.)

Find the number of distinct real solutions of the equation

x =
(
(1 + a)x− a

) 1
3

in the cases that arise according to the value of a.

STEP I 2009 Mark Scheme July 13, 2009 Page 10 of 47



Since cube-rooting is invertible, we have

x =
(
(1 + a)x− a

) 1
3 ⇐⇒ x3 = (1 + a)x− a.

We are thus trying to solve the cubic equation x3− (1 + a)x+ a = 0. Inspection reveals one
root, x = 1, so we can factorise the cubic as (x− 1)(x2 + x− a) = 0. Using the discriminant
of the quadratic factor, 1 + 4a, we find that x2 + x− a = 0 has 0, 1 or 2 real roots according
to whether 1 + 4a < 0, 1 + 4a = 0 or 1 + 4a > 0, respectively.

Hence the original equation has 1 real root if a < −1
4
, 2 distinct real roots if a = −1

4
(being

x = 1 and x = −1
2
), and 3 real roots if a > −1

4
.

In the latter case, there is the possibility that they are not all distinct, though, if x = 1 is a
root of x2 + x− a = 0. This only happens when a = 2, and in this case, there are also only
2 distinct real roots.

Marks

M1: Converting equation to cubic

B1: Identifying x = 1 as root of cubic

M1: Using discriminant on resulting quadratic to count distinct real roots of
quadratic

A1 cao: Correct determination of the number of distinct real roots of quadratic

A1 cao: Deducing number of (not necessarily distinct) real roots of cubic

M1: Checking for root of quadratic equal to 1

A1 cao: Deducing only two distinct roots when a = 2

(ii) Find the number of distinct real solutions of the equation

x = (b+ x)
1
2

in the cases that arise according to the value of b.

This is very similar to part (i), with the only difference being that this time we have b + x
rather than a− x. The argument should therefore be fairly similar to part (i).

Starting with the equation
x = (b+ x)

1
2 , (†)

we again square this to get x2 = b+ x, or x2 − x− b = 0.

From the first form, we see that to have any solutions, we must have x > 0 and b + x > 0.
From the second, we see that the discriminant 1 + 4b > 0 and b+ x = x2 > 0 as long as x is
real. So if b < −1

4
, there are no solutions.

The solutions to the quadratic are

x =
1±
√

1 + 4b

2
.
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In the case b = −1
4
, the repeated solution is x = 1

2
> 0, so there is one solution in this case.

In the case b > −1
4
, we still require x > 0 for solutions. The smaller root is

x =
1−
√

1 + 4b

2
,

which is negative if b > 0 and non-negative if b 6 0.

Thus the equation (†) has no solutions if b < −1
4
, one solution if b = −1

4
or b > 0, and two

solutions if −1
4
< b 6 0.

It is instructive to sketch the curves y = x and y = (b + x)
1
2 on the same axes to see why

this should be the case.

Marks

M1: Squaring (†) to get quadratic

M1: Considering discriminant to count real roots

A1: Deducing no real solutions if b < −1
4

A1 cso: Exactly one real solution if b = −1
4

(need x > 0 explicitly mentioned or
some other argument that there really is a solution for this mark)

M1: Consideration of sign of x in the case b > −1
4

A1 cao: Deduction of number of solutions in case b > −1
4

(split into cases
−1

4
< b 6 0 and b > 0)

If the candidate has attempted to answer this part by pure graph-sketching,
then mark as follows. If they have used a combined method, discuss with
the Principal Examiner.

M1: Sketching (b+x)
1
2 for at least one non-zero value of b, getting general shape

correct

A1: Indicating that the curve meets the x-axis at x = −b or otherwise showing
how the value of b relates to the position of the curve

M1: Deducing that there are two solutions for b0 < b 6 0, one solution for b = b0
and b > 0, and no solutions for b < b0, where b0 is some negative number
where y = (b+ x)

1
2 and y = x are tangent (award this mark if the candidate

is most of the way to this conclusion)

M1: Attempting to solve (b + x)
1
2 = x by squaring to determine the value of b

which gives a double root

M1: Considering determinant to count real roots

A1 cso: Determination of b0 and correct conclusion
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Question 4

The sides of a triangle have lengths p− q, p and p+ q, where p > q > 0. The largest and
smallest angles of the triangle are α and β, respectively. Show by means of the cosine rule
that

4(1− cosα)(1− cos β) = cosα + cos β.

In situations like this, it’s often useful to draw a sketch to gain some clarity about what is
happening. Note that the largest angle is always opposite the longest side, and the smallest
angle is always opposite the shortest side.

A p+ q B

p− q

C

p
α

β

Using the cosine rule with the angles at A and C gives, respectively:

(p+ q)2 = p2 + (p− q)2 − 2p(p− q) cosα (1)

(p− q)2 = p2 + (p+ q)2 − 2p(p+ q) cos β (2)

Then we need to manipulate these two equations in order to reach the desired result. There
are several ways to do this; we show two of them.

Approach 1: Determining the cosines and substituting

Equation (1) gives, upon rearranging:

cosα =
p2 + (p− q)2 − (p+ q)2

2p(p− q)

=
p2 + (p2 − 2pq + q2)− (p2 + 2pq + q2)

2p(p− q)

=
p2 − 4pq

2p(p− q)

=
p− 4q

2(p− q)
. (3)
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Likewise, equation (2) yields:

cos β =
p2 + (p+ q)2 − (p− q)2

2p(p+ q)

=
p2 + (p2 + 2pq + q2)− (p2 − 2pq + q2)

2p(p+ q)

=
p2 + 4pq

2p(p+ q)

=
p+ 4q

2(p+ q)
. (4)

Using equations (3) and (4), we now evaluate 4(1− cosα)(1− cos β) and cosα + cos β:

4(1− cosα)(1− cos β) = 4

(
1− p− 4q

2(p− q)

)(
1− p+ 4q

2(p+ q)

)
= 4.

p+ 2q

2(p− q)
.
p− 2q

2(p+ q)

=
p2 − 4q2

p2 − q2

and

cosα + cos β =
p− 4q

2(p− q)
+

p+ 4q

2(p+ q)

=
(p− 4q)(p+ q) + (p+ 4q)(p− q)

2(p− q)(p+ q)

=
p2 − 3pq − 4q2 + p2 + 3pq − 4q2

2(p2 − q2)

=
2(p2 − 4q2)

2(p2 − q2)

=
p2 − 4q2

p2 − q2
.

Therefore we have the required equality

4(1− cosα)(1− cos β) = cosα + cos β. (∗)

Approach 2: Determining q/p and equating

From equation (1) above, we can expand to get

p2 + 2pq + q2 = p2 + p2 − 2pq + q2 − 2p(p− q) cosα,

so that
p2 − 4pq = 2p(p− q) cosα.

We now divide by p2 to get

1− 4q/p = 2(1− q/p) cosα.
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We can now rearrange this to find q/p:

(2 cosα− 4)q/p = 2 cosα− 1,

so
q

p
=

2 cosα− 1

2 cosα− 4
.

Doing the same for equation (2) gives:

p2 − 2pq + q2 = p2 + p2 + 2pq + q2 − 2p(p+ q) cos β,

so that
p2 + 4pq = 2p(p+ q) cos β.

Again, dividing by p2 brings us to

1 + 4q/p = 2(1 + q/p) cos β,

yielding
(4− 2 cos β)q/p = 2 cos β − 1,

so
q

p
=

2 cos β − 1

4− 2 cos β
.

Equating these two expressions for q/p now gives us

2 cosα− 1

2 cosα− 4
=

2 cos β − 1

4− 2 cos β
,

so that (cross-multiplying and dividing by two):

(2 cosα− 1)(2− cos β) = (cosα− 2)(2 cos β − 1).

Now we expand the brackets to get

4 cosα− 2− 2 cosα cos β + cos β = 2 cosα cos β − 4 cos β − cosα + 2,

so that
4− 4 cosα− 4 cos β + 4 cosα cos β = cosα + cos β,

and the left hand side factorises to give us our desired result:

4(1− cosα)(1− cos β) = cosα + cos β.

Marks

NB: This question has multiple ways of answering it. Please adapt the mark
scheme to match the approaches taken by candidates, and discuss these
adaptations with the Principal Examiner before you release the relevant
scripts back into circulation.

B1: Correct application of cosine rule to angle α (any valid form)

B1: Correct application of cosine rule to angle β (any valid form)
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M1: Expanding or otherwise attempting to simplify an expression for cosα

A1: Correct simplification of cosα (award if unsimplified version correctly used
later)

M1: Likewise for cos β

A1: Likewise for cos β

M1: Evaluation and simplification of 4(1− cosα)(1− cos β) . . .

A1: . . . correctly

M1: Likewise for cosα + cos β . . .

A1: . . . correctly

A1 cso: Deducing required equality

In the case α = 2β, show that cos β = 3
4

and hence find the ratio of the lengths of the
sides of the triangle.

Substituting α = 2β into (∗) gives:

4(1− cos 2β)(1− cos β) = cos 2β + cos β.

We use the double angle formula for cos 2β to write this expression in terms of cos β, giving:

4(2− 2 cos2 β)(1− cos β) = 2 cos2 β + cos β − 1,

so
8(1 + cos β)(1− cos β)2 = (2 cos β − 1)(cos β + 1).

Since cos β 6= −1, we can divide by cos β + 1 to get

8(1− cos β)2 = 2 cos β − 1,

so we can rearrange to get
8 cos2 β − 18 cos β + 9 = 0,

which factorises as
(4 cos β − 3)(2 cos β − 3) = 0.

Since cos β = 3
2

is impossible, we must have cos β = 3
4
, as required.

We now substitute this result into equation (2) to get

(p− q)2 = p2 + (p+ q)2 − 2p(p+ q).3
4
.

Expanding this gives

p2 − 2pq + q2 = p2 + p2 + 2pq + q2 − 3
2
p2 − 3

2
pq,

so
1
2
p2 − 5

2
pq = 0,

which gives p = 5q. Hence the side lengths are p− q = 4q, p = 5q and p+ q = 6q, which are
in the ratio 4 : 5 : 6.
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An alternative way to do this last part is as follows. We have α = 2β, so cosα = 2 cos2 β−1 =
2 · (3

4
)2 − 1 = 1

8
. It follows that sinα = 1

8

√
63 = 3

8

√
7 and sin β = 1

4

√
7. We can now use the

sine rule to get
a

sinA
=

c

sinC
,

or a/c = sinA/ sinC. It follows that

p− q
p+ q

=
sin β

sinα

=
1
4

√
7

3
8

√
7

=
2

3
,

giving 3(p− q) = 2(p+ q), or p = 5q. The rest of the result follows as above.

A third way of doing this, and arguably the simplest, is to substitute into equation (4),
which gives:

3

4
=

p+ 4q

2(p+ q)
.

Multiplying both sides by 4(p+ q) to clear the fractions gives

3(p+ q) = 2(p+ 4q),

so that p = 5q. The rest of the argument again follows as above.

Marks

M1: Substituting α = 2β into (∗)
M1: Using double angle formula for cos 2β

M1: Dividing by or taking out factor of cos β + 1

A1: Finding a quadratic for cos β

M1: Factorising or otherwise solving quadratic to correctly find cos β

M1: Substituting into (2)

M1: Rearranging to deduce quadratic for p in terms of q

A1: Finding side lengths in terms of p or in terms of q

A1 cao: Deducing ratio of side lengths

Alternative method for final four marks:

M1: Determine cosα and sinα, sin β

M1: Apply the sine rule to determine (p− q)/(p+ q) or equivalent

A1, A1 cao: as above

Third method for final four marks:

M1: Substitute into (4)

M1: Rearrange to find p in terms of q

A1, A1 cao: as above
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Question 5

A right circular cone has base radius r, height h and slant length `. Its volume V , and
the area A of its curved surface, are given by

V = 1
3
πr2h, A = πr`.

(i) Given that A is fixed and r is chosen so that V is at its stationary value, show that
A2 = 3π2r4 and that ` =

√
3 r.

Since A is fixed and r is allowed to vary, we rearrange A = πr` as ` = A/πr. Also, we can
draw a side view of the cone to determine the relationship between r, h and `:

r

`
h

So clearly, `2 = h2 + r2.

Substituting this into ` = A/πr gives

`2 = h2 + r2 =
A2

π2r2
,

which we can rearrange to give h2 in terms of r and A:

h2 =
A2

π2r2
− r2.

Now V = 1
3
πr2h, so we have

V 2 = 1
9
π2r4h2

=
π2r4

9

(
A2

π2r2
− r2

)
= 1

9
(A2r2 − π2r6).

(Working with V 2 rather than just V allows us to avoid square roots.)

Differentiating with respect to r gives

2V
dV

dr
= 1

9
(2A2r − 6π2r5).

When V is at its stationary value, dV/dr = 0, so we require 2A2r − 6π2r5 = 0. As r 6= 0,
we must have 6π2r4 = 2A2, or A2 = 3π2r4, as wanted.
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Substituting this into our formula for `2 gives

`2 =
A2

π2r2

=
3π2r4

π2r2

= 3r2,

so ` =
√

3 r, as we wanted to show.

Marks

B1: Relation between `, h and r using Pythagoras

M1: Substituting to get h2 in terms of A and r

A1 cao: Correct expression for h2

M1: Using this to rewrite V 2 in terms of A and r

A1: Correct expression for V 2 (or for V )

M1: Reasonable attempt at differentiating V 2 (or V )

A1: Correct derivative

M1: Using dV/dr = 0 to find equation relating A2 and r

A1 cso: Deducing required equation for A2

M1: Substituting into formula for `2

A1 cso: Deducing required equation for `

(ii) Given, instead, that V is fixed and r is chosen so that A is at its stationary value,
find h in terms of r.

We have `2 = h2 + r2 = A2/π2r2 and V = 1
3
πr2h. This time, V is fixed, so h = 3V/πr2.

Thus

A2 = π2r2(h2 + r2)

= π2r2

(
9V 2

π2r4
+ r2

)
=

9V 2

r2
+ π2r4

Differentiating as before gives

2A
dA

dr
= −18V 2

r3
+ 4π2r3,

so dA/dr = 0 when 4π2r6 = 18V 2, so 2πr3 = 3V
√

2. Finally, substituting this into our
formula h = 3V/πr2 gives

h =
2πr3/

√
2

πr2

=
√

2 r.
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Marks

M1: Writing h in terms of V and r

M1: Substituting into formula for A2

A1 cao: Correct formula for A2 in terms of V and r

M1: Differentiating A2 or A (reasonable attempt)

A1 cao: Correct derivative

M1: Solving dA/dr = 0 to get equation relating V and r

A1: Deducing 2πr3 = 3V
√

2 or equivalent

M1: Substituting into formula for h

A1 cao: Finding h in terms of r
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Question 6

(i) Show that, for m > 0,∫ m

1/m

x2

x+ 1
dx =

(m− 1)3(m+ 1)

2m2
+ lnm.

We note that the numerator of the fraction (x2) has a higher degree than the denominator
(x+ 1), so we divide them first, getting x2 = (x+ 1)(x− 1) + 1, so our integral becomes∫ m

1/m

x2

x+ 1
dx =

∫ m

1/m

x− 1 +
1

x+ 1
dx

=
[

1
2
x2 − x+ ln |x+ 1|

]m
1/m

=
(

1
2
m2 −m+ ln |m+ 1|

)
−
(

1
2
m−2 −m−1 + ln |(1/m) + 1|

)
=
m4 − 2m3 − 1 + 2m

2m2
+ ln

m+ 1

(1/m) + 1

=
(m+ 1)(m3 − 3m2 + 3m− 1)

2m2
+ ln

m(m+ 1)

1 +m

=
(m+ 1)(m− 1)3

2m2
+ lnm.

(An alternative approach is to use the substitution u = x + 1, which leads to exactly the
same result.)

Marks

M1: Rewriting fraction as x− 1 + 1
x+1

or using substitution u = x+ 1

A1 cao: Integrating integrand correctly (ignore limits and absence of absolute
value signs for this mark)

M1: Substituting limits correctly and reasonable attempt at simplification

A1 cso: Deducing given expression for solution; must be clear how they reached
(m− 1)3(m+ 1) from the quartic expression

(ii) Show by means of a substitution that∫ m

1/m

1

xn(x+ 1)
dx =

∫ m

1/m

un−1

u+ 1
du .

Comparing the two integrals suggests that we should try the substitution u = 1/x. If we do
this, we get x = 1/u and dx/du = −1/u2. Also, the limits x = 1/m and x = m become
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u = m and u = 1/m respectively. So we have∫ m

1/m

1

xn(x+ 1)
dx =

∫ 1/m

m

1

(1/u)n(1/u+ 1)

dx

du
du

=

∫ 1/m

m

un

1/u+ 1

−1

u2
du

= −
∫ 1/m

m

un

u(1 + u)
du

=

∫ m

1/m

un−1

u+ 1
du.

Marks

M1: Substituting u = 1/x

M1 dep: Substituting correctly (condone incorrect dx/du)

M1 dep: Reversing limits correctly (dependent on previous M1)

A1 cso: Fully correct solution

(iii) Evaluate:

(a)

∫ 2

1/2

x5 + 3

x3(x+ 1)
dx .

This clearly relies on the earlier parts of the question, where m = 2. We can break the
integral into two parts and use the results of (i) and (ii) as follows:∫ 2

1/2

x5 + 3

x3(x+ 1)
dx =

∫ 2

1/2

x5

x3(x+ 1)
dx+ 3

∫ 2

1/2

1

x3(x+ 1)
dx

=

∫ 2

1/2

x2

x+ 1
dx+ 3

∫ 2

1/2

u2

u+ 1
du

= 4

∫ 2

1/2

x2

x+ 1
dx

= 4

(
(m+ 1)(m− 1)3

2m2
+ lnm

)
= 4(3

8
+ ln 2)

= 3
2

+ 4 ln 2.

Marks

M1: Splitting integral into two parts

M1: Simplifying first integral and applying (ii) to second integral

A1: Evaluating both integrals correctly (allow use of m instead of 2 for this
mark)
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M1: Substituting m = 2 in expression from (i) (this mark may be combined
with preceding A1)

A1 cao: Purely numerical answer in given or equivalent form

(iii) Evaluate:

(b)

∫ 2

1

x5 + x3 + 1

x3(x+ 1)
dx .

It is no longer so obvious how to proceed, as the limits are not of the form 1/m to m. So
we break up the integral as in (a) and repeat the substitution of part (ii) once again, noting
that the only change here is that the limits are different. We have:∫ 2

1

x5

x3(x+ 1)
dx =

∫ 2

1

x2

x+ 1
dx,

and there is not much we can do at this point, short of evaluating this integral as in part (i).

Next, we have ∫ 2

1

x3

x3(x+ 1)
dx =

∫ 2

1

1

x+ 1
dx

=
[
ln |x+ 1|

]2
1

= ln 3− ln 2.

The third part gives us ∫ 2

1

1

x3(x+ 1)
dx =

∫ 1

1/2

u2

u+ 1
du,

by using the substitution of part (ii), but noting the the limits transform into 1/1 = 1 and
1/2, which are then reversed by the minus sign.

Adding all three terms and using part (i) with m = 2 now gives:∫ 2

1

x5 + x3 + 1

x3(x+ 1)
dx =

∫ 2

1

x2

x+ 1
dx+ ln 3− ln 2 +

∫ 1

1/2

u2

u+ 1
du

=

∫ 2

1/2

x2

x+ 1
dx+ ln 3− ln 2

= 3
8

+ ln 2 + ln 3− ln 2

= 3
8

+ ln 3.

Marks

M1: Splitting up integral and simplifying all three parts

M1: Integrating 1
x+1

mostly correctly

A1 cao: Integral
∫

1
x+1

dx correctly evaluated

M1: Substituting u = 1/x in third integral to get
∫

u2

u+1
du (ignoring limits)
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A1: Correct substitution, including limits

M1: Combining first and third integrals or evaluating both integrals

A1 cao: Evaluating all integrals and deducing correct final answer
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Question 7

Show that, for any integer m,∫ 2π

0

ex cosmx dx =
1

m2 + 1

(
e2π − 1

)
.

This is a standard integral with standard techniques for solving it. The approach used here
is not the only possible one, but is fairly general.

We write I =
∫ 2π

0
ex cosmx dx and apply integration by parts twice, taking great care of the

signs, as follows:

I =

∫ 2π

0

ex cosmx dx

=
[
ex · 1

m
sinmx

]2π
0
−
∫ 2π

0

ex · 1

m
sinmx dx

=
(

1
m

e2π sin 2πm
)
−
(

1
m

e0 sin 0
)
−
∫ 2π

0

ex · 1

m
sinmx dx

= 0−
∫ 2π

0

ex · 1

m
sinmx dx

= −
[
ex · 1

m2
(− cosmx)

]2π
0

+

∫ 2π

0

ex · 1

m2
(− cosmx) dx

=
( 1

m2
e2π cos 2πm

)
−
( 1

m2
e0 cos 0

)
−
∫ 2π

0

ex · 1

m2
cosmx dx

=
1

m2

(
e2π − 1

)
− 1

m2
I.

Multiplying throughout by m2 gives

m2I =
(
e2π − 1

)
− I,

and now adding I to both sides and dividing by m2 + 1 gives the desired result.

We performed these integrations by writing
∫

ex cosmx dx in the form
∫
v du

dx
dx, where

du
dx

= cosmx and v = ex. We could equally well have chosen du
dx

= ex and v = cosmx, and
would have ended up with the same conclusion.

Marks

M1: Application of parts once

A1: Correct evaluation of integral (following first application of parts)

M1 dep: Second application of parts (dependent on first M1)

A1: Correct evaluation of integral (following second application of parts)

A1 cso: Deduction of stated result by rearranging
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(i) Expand cos(A+B) + cos(A−B). Hence show that∫ 2π

0

ex cosx cos 6x dx = 19
650

(
e2π − 1

)
.

We have

cos(A+B) + cos(A−B) = cosA cosB − sinA sinB + cosA cosB + sinA sinB

= 2 cosA cosB.

Matching this to the integral we have been given, we set A = 6x and B = x (so that A−B
is positive, though this is not critical), giving

2 cosx cos 6x = cos 7x+ cos 5x.

Thus our integral becomes∫ 2π

0

ex cosx cos 6x dx =
1

2

∫ 2π

0

ex(cos 7x+ cos 5x) dx

=
1

2

(
1

72 + 1

(
e2π − 1

)
+

1

52 + 1

(
e2π − 1

))
=

1

2

(
1

50
+

1

26

)(
e2π − 1

)
=

1

2
· 26 + 50

1300

(
e2π − 1

)
= 19

650

(
e2π − 1

)
,

as required.

Marks

M1: Expanding the cosines using the compound angle formulæ

A1 cso: Deducing factor formula stated

M1: Setting A = 6x and B = x or vice versa

A1: Rewriting 2 cosx cos 6x as cos 7x+ cos 5x or equivalent

M1: Using (i) to evaluate integral

M1 dep: Factorising out e2π − 1 and simplifying resulting fractions

A1 cso: Deducing stated result

(ii) Evaluate

∫ 2π

0

ex sin 2x sin 4x cosx dx.

We are clearly asked to do the same type of trick again. Here is one way to proceed.
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We are looking for the product of two sines, and this appears in the compound angle formula
for cosine. So we consider

cos(A+B)− cos(A−B) = cosA cosB − sinA sinB − cosA cosB − sinA sinB

= −2 sinA sinB.

We can therefore write 2 sin 2x sin 4x = cos 2x − cos 6x, using A = 4x and B = 2x. This
gives the integral as∫ 2π

0

ex sin 2x sin 4x cosx dx =
1

2

∫ 2π

0

ex(cos 2x− cos 6x) cosx dx

=
1

2

∫ 2π

0

ex cos 2x cosx dx− 1

2

∫ 2π

0

ex cos 6x cosx dx.

Now the second integral is exactly the one we evaluated in (i), and the first integral can be
approached in the same way, with A = 2x and B = x, so 2 cos 2x cosx = cos 3x + cosx.
Therefore ∫ 2π

0

ex cos 2x cosx dx =
1

2

∫ 2π

0

ex(cos 3x+ cosx) dx

=
1

2

(
1

32 + 1

(
e2π − 1

)
+

1

12 + 1

(
e2π − 1

))
=

1

2

(
1

10
+

1

2

)(
e2π − 1

)
= 3

10

(
e2π − 1

)
.

Finally, subtracting the two integrals gives∫ 2π

0

ex sin 2x sin 4x cosx dx =
1

2

∫ 2π

0

ex cos 2x cosx dx− 1

2

∫ 2π

0

ex cos 6x cosx dx

= 1
2
· 3

10

(
e2π − 1

)
− 1

2
· 19

650

(
e2π − 1

)
= 1

2

(
195
650
− 19

650

)(
e2π − 1

)
= 1

2
· 176

650

(
e2π − 1

)
= 44

325

(
e2π − 1

)
.

Marks

M1: Deducing another factor formula (either for 2 sinA sinB or 2 sinA cosB)

M1 dep: Applying this to the integrand

A1: Splitting the integral into two simpler integrals

M1: Applying factor formula to resulting integral(s)

M1: Using (i) to evaluate resulting integrals

A1: For evaluating each
∫

ex cos ax cos bx or the like

M1: Combining the various integrals to determine the original integral

A1 cao: Evaluating the original integral (fraction need not be simplified to
lowest terms)
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Question 8

(i) The equation of the circle C is

(x− 2t)2 + (y − t)2 = t2,

where t is a positive number. Show that C touches the line y = 0.

This is a circle with centre (2t, t) and radius t, therefore it touches the x-axis, which is
distance t from the centre.

Alternatively, we are looking to solve the simultaneous equations

(x− 2t)2 + (y − t)2 = t2

y = 0.

Substituting the second equation into the first gives (x − 2t)2 + t2 = t2, or (x − 2t)2 = 0.
Since this only has one solution, x = 2t, the line must be tangent to the circle.

Marks

Either: M1: Description of circle

A1 cso: Conclusion

Or:

M1: Substituting y = 0 into equation of circle

A1 cso: Conclusion

(i) (cont.)

Let α be the acute angle between the x-axis and the line joining the origin to the
centre of C. Show that tan 2α = 4

3
and deduce that C touches the line 3y = 4x.

We begin by drawing a sketch of the situation.

C

α
2t

t
α
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Clearly, therefore, tanα = t/2t = 1
2
, so

tan 2α =
2 tanα

1− tan2 α

=
1

1− 1
4

= 4
3
.

From the sketch, it is clear that by symmetry, the line through the origin which makes an
angle of 2α with the x-axis touches the circle C. Since the gradient of this line is tan 2α = 4

3

and it passes through the origin, it has equation y = 4
3
x, or 3y = 4x.

Marks

M1: Correct sketch of situation (may be implied by later working)

B1: Evaluating tanα

M1: Evaluating tan 2α using double angle formula

A1 cso: Showing tan 2α = 4
3

M1: Argument by symmetry or otherwise that line at angle 2α through origin
touches C

A1 cso: Deducing equation of this line (need to mention gradient equals tan of
angle or similar)

(ii) Find the equation of the incircle of the triangle formed by the lines y = 0, 3y = 4x
and 4y + 3x = 15.

Note: The incircle of a triangle is the circle, lying totally inside the triangle, that
touches all three sides.

This circle has the properties described in part (i), in that it touches both the x-axis (i.e.,
the line y = 0) and the line 3y = 4x, and it lies above the x-axis, so it must have the form
given. The only remaining condition is that it must touch the line 4y+ 3x = 15. Two circles
with centre (2t, t) touch these three lines, but only one of them lies within the triangle, as
illustrated on this sketch, so we must take the one with the smaller value of t:

3y = 4x

4y + 3x = 15
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Substituting 4y + 3x = 15 into the equation of C will give us the intersections of the line
and the circle. The line will be a tangent to C if and only if the discriminant of the resulting
quadratic equation is 0. Doing this, from the equation of C:

(x− 2t)2 + (y − t)2 = t2

we get:
(x− 2t)2 + ((15− 3x)/4− t)2 = t2.

Multiplying both sides by 42 and expanding gives:

16x2 − 64tx+ 64t2 + (15− 3x)2 − 8(15− 3x)t+ 16t2 = 16t2,

so
16x2 − 64tx+ 64t2 + 225− 90x+ 9x2 − 120t+ 24tx+ 16t2 = 16t2.

Collecting terms in x gives:

25x2 − (90 + 40t)x+ 225− 120t+ 64t2 = 0.

Since this has a repeated root, as the line is required to be tangent to the circle, the discrim-
inant must be zero, so

(90 + 40t)2 − 4× 25(225− 120t+ 64t2) = 0,

so
(9 + 4t)2 − (225− 120t+ 64t2) = 0,

or
16t2 + 72t+ 81− (225− 120t+ 64t2) = 0,

giving
−48t2 + 192t− 144 = 0.

Dividing all the terms by −48 gives t2 − 4t + 3 = 0, which factorises as (t − 1)(t − 3) = 0.
Thus the two circles in the sketch are given by t = 1 and t = 3, and the incircle is clearly
the one with t = 1. So the incircle has equation

(x− 2)2 + (y − 1)2 = 1.

Marks

M1: Circle must have the form given in part (i)

M1: Need to choose the smaller value of t to get the incircle rather than the
excircle (must be justified at some point to get this mark and final A mark)

M1: Tangent if and only if discriminant is zero (condone “if” instead of “iff”)

M1: Substituting 4y + 3x = 15 into equation of C

M1 dep: Expanding equation with the aim of collecting like terms

M1 dep: Collecting terms in x2, x and constant term

A1: Correct quadratic in x

M1: Finding the discriminant of this quadratic

M1: Rearranging to determine quadratic for t

A1: Correct quadratic for t

A1 cao: Solving quadratic to find t

A1 cso: Correct equation for circle (must have justified choice of t for this mark)
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Question 9

Two particles P and Q are projected simultaneously from points O and D, respectively,
where D is a distance d directly above O. The initial speed of P is V and its angle of
projection above the horizontal is α. The initial speed of Q is kV , where k > 1, and
its angle of projection below the horizontal is β. The particles collide at time T after
projection.
Show that cosα = k cos β and that T satisfies the equation

(k2 − 1)V 2T 2 + 2dV T sinα− d2 = 0.

We begin by drawing a sketch showing the initial situation.

O

P
V

α

D

Q
kV

β

+ve

For components, we will write uP and uQ for the horizontal components of the velocities
of P and Q respectively, and vP and vQ for the vertical components (measured upwards).
For the displacements from O, we write xP and xQ for the horizontal components and yP
and yQ for the vertical components.

Resolving horizontally, using the “suvat” equations, we have

uP = V cosα,

uQ = kV cos β;

xP = V t cosα,

xQ = kV t cos β.

Likewise, vertically we have

vP = V sinα− gt,
vQ = −kV sin β − gt;
yP = V t sinα− 1

2
gt2,

yQ = d− kV t sin β − 1
2
gt2.

At time T , the particles collide, so xP = xQ, giving

V T cosα = kV T cos β,
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so that cosα = k cos β.

Also, yP = yQ, so
V T sinα− 1

2
gT 2 = d− kV T sin β − 1

2
gT 2,

which gives
V T sinα = d− kV T sin β.

Now k2 sin2 β = k2−k2 cos2 β = k2−cos2 α from the above, so we rearrange and then square
both sides of the previous equation to make use of this conclusion:

kV T sin β = d− V T sinα,

so
k2V 2T 2 sin2 β = (d− V T sinα)2,

which then gives us

V 2T 2(k2 − cos2 α) = d2 − 2dV T sinα + V 2T 2 sin2 α.

Finally, subtracting the right hand side from the left gives

V 2T 2(k2 − cos2 α− sin2 α)− d2 + 2dV T sinα = 0,

or
V 2T 2(k2 − 1) + 2dV T sinα− d2 = 0, (∗)

as required.

Marks

M1: Resolving velocities and/or displacements

M1: Use of “suvat” equations or equivalent

A1: Horizontal components of displacement for P and Q

A1: Vertical component of displacement for P

A1: Vertical component of displacement for Q (including distance above O, or
explicitly measured from D)

M1: Equating horizontal components of displacement when collide

A1 cso: Deduction of cosα = k cos β

M1: Equating vertical components of displacement when collide (must include d
in equation)

B1: Expressing k2 sin2 β in terms of α (or equivalent)

M1: Rearranging vertical components equation to get A sin2 β = · · ·
M1: Subtituting to eliminate β from equation

A1 cso: Deducing given quadratic in T

Given that the particles collide when P reaches its maximum height, find an expression
for sin2 α in terms of g, d, k and V , and deduce that

gd 6 (1 + k)V 2.
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At the maximum height, we have vP = 0, so V sinα = gT . Substituting for T in (∗) gives
us

V 2

(
V sinα

g

)2

(k2 − 1) + 2dV

(
V sinα

g

)
sinα− d2 = 0.

Multiplying through by g2 and expanding brackets gives

(k2 − 1)V 4 sin2 α + 2gdV 2 sin2 α− g2d2 = 0.

Thus

sin2 α =
g2d2

(k2 − 1)V 4 + 2gdV 2
.

For the inequality, the only thing we know for certain is that sin2 α 6 1, and this gives

g2d2

(k2 − 1)V 4 + 2gdV 2
6 1,

so
g2d2 6 (k2 − 1)V 4 + 2gdV 2.

It is not immediately clear how to continue, so we try completing the square for gd:

(gd− V 2)2 − V 4 6 (k2 − 1)V 4,

so that
(gd− V 2)2 6 k2V 4.

Now if a2 6 b2, then a 6 |b|, so
gd− V 2 6 |kV 2|.

But kV 2 > 0, so we are almost there:

gd− V 2 6 kV 2,

which finally gives us the required

gd 6 (1 + k)V 2.

Marks

M1: At maximum height, vertical component of velocity is zero, or derivative of
vertical component of displacement is zero

A1: Deducing V sinα = gT

M1: Substituting into (∗) and multiplying through by g2

A1 cao: Expression for sin2 α

M1: Using sin2 α 6 1 in resulting expression

M1: Completing the square for gd

M1: Deducing gd − V 2 6 kV 2 (condone ignoring absolute values issue for this
mark)

A1 cso: Conclusion gd 6 (1 + k)V 2; for this mark, need to note something about
the need for kV 2 > 0
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Question 10

A triangular wedge is fixed to a horizontal surface. The base angles of the wedge are α
and π

2
−α. Two particles, of masses M and m, lie on different faces of the wedge, and are

connected by a light inextensible string which passes over a smooth pulley at the apex of
the wedge, as shown in the diagram. The contacts between the particles and the wedge
are smooth.

M

m

α
π
2
− α

(i) Show that if tanα >
m

M
the particle of mass M will slide down the face of the wedge.

We start by drawing the forces on the picture, and labelling the masses as A (of mass M)
and B (of mass m). We let T be the tension in the string.

A

B

α
π
2
− αmg

TNA

a
Mg

T

NB
a

We now resolve along the faces of the wedge at A and B. (It turns out that resolving
normally to the face doesn’t help at all for this problem.)

RA(↗) T −Mg sinα = −Ma (1)

RB(↖) T −mg cosα = ma (2)

We are not interested in the tension in the string, so we subtract these equations (as (2)−(1))
to eliminate T , yielding

Mg sinα−mg cosα = ma+Ma.

Thus, dividing by M +m gives

a =
Mg sinα−mg cosα

M +m
. (3)

The mass M will slide down the slope if and only if a > 0, that is if and only if

Mg sinα−mg cosα > 0.

Rearranging and dividing by g cosα gives M tanα > m, or

tanα >
m

M
.

STEP I 2009 Mark Scheme July 13, 2009 Page 34 of 47



Marks

M1: Reasonable attempt at a force diagram (may be implied by later working,
though this is unlikely)

A1: Either fully correct at A, fully correct at B or correct at both modulo one
repeated error (e.g., forgetting normal reaction)

A1 cao: All forces in force diagram correct, and no incorrect forces present

M1: Resolving along the plane at A or B

A1: Correct resolution at A

A1: Correct resolution at B

M1: Eliminating T

A1 cao: Deducing a correct expression for the acceleration

M1: Using a > 0 to deduce condition for sliding

A1 cso: Rearranging to conclude stated result

(ii) Given that tanα =
2m

M
, show that the magnitude of the acceleration of the particles

is
g sinα

tanα + 2

and that this is maximised at 4m3 = M3 .

We simply substitute 2m/M = tanα into our formula (3) for a to find the magnitude of the
acceleration:

a =
Mg sinα−mg cosα

M +m

=
2g sinα− (2m/M)g cosα

2 + (2m/M)
multiplying by 2/M

=
2g sinα− g tanα cosα

2 + tanα

=
2g sinα− g sinα

2 + tanα

=
g sinα

2 + tanα

To maximise this with respect to α, we differentiate with respect to α (using the quotient
rule) and solve da/dα = 0:

da

dα
=

(2 + tanα)g cosα− sec2 α.g sinα

(2 + tanα)2

=
g(2 cosα + sinα− sec2 α sinα)

(2 + tanα)2

= 0

so we require
2 cosα + sinα− sec2 α sinα = 0.
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We can simplify this by dividing through by cosα, so that we are able to express everything
in terms of tanα:

2 + tanα− sec2 α tanα = 0,

so
2 + tanα− (1 + tan2 α) tanα = 0,

so that tan3 α = 2. Remembering that tanα = 2m/M , we finally get

8m3

M3
= 2,

which leads immediately to M3 = 4m3.

We finally need to ensure that this stationary point gives us a maximum; this is clear, since
as α→ 0, a→ 0 and as α→ π

2
, a→ 0.

Marks

M1: For substituting tanα = 2m/M into the expression for acceleration

M1: Reasonable manipulation of the resulting expression towards the required
form

A1 cso: Reaching the stated form

M1: Differentiating a wrt α to find stationary point; must be a reasonable
attempt using quotient rule or equivalent

A1: Correct derivative, even if not simplified

M1 (dep on previous M1): Deducing 2 cosα + sinα − sec2 α sinα = 0 or
equivalent; follow through incorrect derivative for this mark

M1: Rearranging equation to get an expression involving only tanα

A1 cao: Deducing tan3 α = 2

A1: Deducing M3 = 4m3

B1 (dependent on reasonable attempt at finding stationary point): argument
that this stationary point is a maximum
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Question 11

Two particles move on a smooth horizontal table and collide. The masses of the particles
are m and M . Their velocities before the collision are ui and vi, respectively, where i is a
unit vector and u > v. Their velocities after the collision are pi and qi, respectively. The
coefficient of restitution between the two particles is e, where e < 1.

(i) Show that the loss of kinetic energy due to the collision is

1
2
m(u− p)(u− v)(1− e),

and deduce that u > p.

Before the collision:

m

ui
M

vi

After the collision:

m
pi

M
qi

Conservation of momentum gives:

mu+Mv = mp+Mq. (1)

Newton’s Law of Restitution gives:

q − p = e(u− v). (2)

Now the loss of kinetic energy due to the collision is

E = (1
2
mu2 + 1

2
Mv2)− (1

2
mp2 + 1

2
Mq2)

= 1
2
m(u2 − p2) + 1

2
M(v2 − q2)

= 1
2
m(u− p)(u+ p) + 1

2
M(v − q)(v + q).

Now from (1), we get M(v − q) = m(p− u), so we get

E = 1
2
m(u− p)(u+ p) + 1

2
m(p− u)(v + q)

= 1
2
m(u− p)

(
(u+ p)− (v + q)

)
= 1

2
m(u− p)

(
(u− v)− (q − p)

)
= 1

2
m(u− p)

(
(u− v)− e(u− v)

)
= 1

2
m(u− p)(u− v)(1− e).

Now, since the loss of energy cannot be negative, we have E > 0. But we are given that
e < 1 and u > v, so we must have u− p > 0, or u > p.
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Marks

B1 cao: Conservation of momentum equation

B1 cao: (Newton’s) Law of Restitution equation

M1: Calculating loss of KE

A1 cao: Simplified expression for loss of KE (need not break up difference of two
squares for this)

M1: Use of CoM result to simplify loss of KE

M1 (indep): Use of LoR result to simplify loss of KE

A1 cso: Deducing stated formula for loss of KE

B1 (indep): Deducing u > p

(ii) Given that each particle loses the same (non-zero) amount of kinetic energy in the
collision, show that

u+ v + p+ q = 0,

and that, if m 6= M ,

e =
(M + 3m)u+ (3M +m)v

(M −m)(u− v)
.

The first particle loses an amount of kinetic energy equal to 1
2
m(u2 − p2); the second loses

1
2
M(v2 − q2), so we are given

1
2
m(u2 − p2) = 1

2
M(v2 − q2),

so
m(u2 − p2)−M(v2 − q2) = 0.

Again, we use M(v − q) = m(p− u), so that

m(u2 − p2)−M(v2 − q2) = m(u+ p)(u− p)−M(v + q)(v − q)
= m(u+ p)(u− p)−m(v + q)(p− u)

= m(p+ q + u+ v)(u− p)
= 0.

Since the amount of kinetic energy lost is non-zero, we have E > 0 (in the notation of
part (i)), so that u > p. Thus we must have p+ q + u+ v = 0.

We can also equate the loss of energy of each particle with 1
2
E, so:

1
2
m(u2 − p2) = 1

4
m(u− p)(u− v)(1− e),

giving
u+ p = 1

2
(u− v)(1− e). (3)

We now need to eliminate p, and rearrange to get an expression for e. Equation (2) gives

Mq −Mp = Me(u− v),
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and subtracting this from (1), mp+Mq = mu+Mv, gives

(m+M)p = (m−Me)u+ (M +Me)v.

We multiply (3) by m+M to get:

(m+M)p+ (m+M)u = 1
2
(M +m)(u− v)(1− e),

and then substitute in our expression for (m+M)p to give us:

(m−Me)u+ (M +Me)v + (m+M)u = 1
2
(M +m)(u− v)(1− e).

We expand and rearrange to collect terms which are multiples of e:

2(mu−Mue+Mv +Mve+mu+Mu) = (Mu−Mv +mu−mv)(1− e)

so

(2Mv − 2Mu+Mu−Mv +mu−mv)e = Mu−Mv +mu−mv − 4mu− 2Mv − 2Mu,

which leads to

(M −m)(v − u)e = −Mu− 3Mv − 3mu−mv.

We can right the right hand side as −(M + 3m)u− (3M +m)v, so that assuming M 6= m,
we can divide by (M −m)(v − u) to get

e =
(M + 3m)u+ (3M +m)v

(M −m)(v − u)
,

as we wanted.

Marks

M1: Difference of loss of KE of two particles is zero

M1: Simplifying difference expression using CoM

A1: Deducing factorised expression m(p+ q+u+ v)(u− p) for (twice) loss of KE

A1 cso: Deducing p+ q + u+ v = 0 (must explicitly explain that u 6= p)

M1: Equating loss of KE in one particle with 1
2
E

A1 cao: Deducing expression for u+ p

M1: Solve original CoM and LoR equations to find expression for p (or
(M +m)p)

A1: Correct expression for p (or (M +m)p)

M1: Substituting p into expression for u+ p

M1: Rearranging to get (· · · )e = (· · · )
A1: Simplifying this expression to correct expression for (M −m)(v − u)e; can

follow through incorrect working for this mark

A1 cso: Deducing stated expression for e
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Question 12

Prove that, for any real numbers x and y, x2 + y2 > 2xy.

We can rearrange the inequality to get

x2 − 2xy + y2 > 0.

But the left hand side is just (x−y)2, so this inequality becomes (x−y)2 > 0. This is clearly
true, as any real number squared is non-negative.

Marks

M1: Considering (x− y)2 > 0

A1 cso: Proving inequality

(i) Carol has two bags of sweets. The first bag contains a red sweets and b blue sweets,
whereas the second bag contains b red sweets and a blue sweets, where a and b are
positive integers. Carol shakes the bags and picks one sweet from each bag without
looking. Prove that the probability that the sweets are of the same colour cannot
exceed the probability that they are of different colours.

We can draw a tree diagram to represent this situation:

R

B

R

B

R

B

a

a+ b

b

a+ b

b

a+ b

a

a+ b

b

a+ b

a

a+ b

So

P(same colour) =
a

a+ b
· b

a+ b
+

b

a+ b
· a

a+ b

=
2ab

(a+ b)2

P(different colours) =
a

a+ b
· a

a+ b
+

b

a+ b
· b

a+ b

=
a2 + b2

(a+ b)2
.
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Since a2 + b2 > 2ab, it follows that the probability that the sweets are of the same colour
cannot exceed the probability that they are of different colours, as required.

Marks

M1: Drawing a correctly structured and labelled tree diagram

A1 cao: All probabilities of branches correct on diagram; alternatively, these
may be given as counts of possibilities (so a+ b times all of the probabilities)

The above two marks may be implied by subsequent working without an actual
tree diagram drawn

M1: Determination of probability that both are the same colour

A1 cao: Correct expression for this probability

M1: Determination of probability that they are different colours

A1 cao: Correct expression for this probability

SC: If the candidate uses possibilities for the tree diagram, gives correct
probabilities in conclusion, but does not indicate where the denominator
(a+ b)2 originates, penalise only the first A1 mark.

A1: Using the initial result to deduce required inequality

(ii) Simon has three bags of sweets. The first bag contains a red sweets, b white sweets
and c yellow sweets, where a, b and c are positive integers. The second bag contains
b red sweets, c white sweets and a yellow sweets. The third bag contains c red sweets,
a white sweets and b yellow sweets. Simon shakes the bags and picks one sweet from
each bag without looking. Show that the probability that exactly two of the sweets
are of the same colour is

3(a2b+ b2c+ c2a+ ab2 + bc2 + ca2)

(a+ b+ c)3
,

and find the probability that the sweets are all of the same colour. Deduce that the
probability that exactly two of the sweets are of the same colour is at least 6 times
the probability that the sweets are all of the same colour.
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We argue in the same way:

P(exactly 2 same) = P(RRW) + P(RRY) + P(RWR)+

P(RYR) + P(WRR) + P(YRR)+

P(WWR) + P(WWY) + P(WRW)+

P(WYW) + P(RWW) + P(YWW)+

P(YYR) + P(YYW) + P(YRY)+

P(YWY) + P(RYY) + P(WYY)

=
aba

(a+ b+ c)3
+

abb

(a+ b+ c)3
+

acc

(a+ b+ c)3
+

aac

(a+ b+ c)3
+

bbc

(a+ b+ c)3
+

cbc

(a+ b+ c)3
+

bcc

(a+ b+ c)3
+

bcb

(a+ b+ c)3
+

bba

(a+ b+ c)3
+

baa

(a+ b+ c)3
+

aca

(a+ b+ c)3
+

cca

(a+ b+ c)3
+

cac

(a+ b+ c)3
+

caa

(a+ b+ c)3
+

cbb

(a+ b+ c)3
+

ccb

(a+ b+ c)3
+

aab

(a+ b+ c)3
+

bab

(a+ b+ c)3

=
3(a2b+ b2c+ c2a+ ab2 + bc2 + ca2)

(a+ b+ c)3
.

More simply, the probability that all three are the same colour is given by

P(all 3 same) = P(RRR) + P(WWW) + P(YYY)

=
abc

(a+ b+ c)3
+

bca

(a+ b+ c)3
+

cab

(a+ b+ c)3

=
3abc

(a+ b+ c)3
.

Now to find the inequality we want, we apply the initial inequality again: we have a2 +
b2 > 2ab, so a2c + b2c > 2abc. Similarly, b2 + c2 > 2bc, so b2a + c2a > 2abc, and finally,
c2b+ a2b > 2abc. Thus

3(a2b+ b2c+ c2a+ ab2 + bc2 + ca2)

(a+ b+ c)3
=

3(a2c+ b2c+ b2a+ c2a+ c2b+ a2b)

(a+ b+ c)3

>
3(2abc+ 2abc+ 2abc)

(a+ b+ c)3

=
6(3abc)

(a+ b+ c)3
,

showing that the probability that exactly two of the sweets are of the same colour is at least
6 times the probability that the sweets are all of the same colour.

Marks

STEP I 2009 Mark Scheme July 13, 2009 Page 42 of 47



M1: Listing the possibilities for exactly two the same

A1 cao: Getting them all correct

M1 (dep): Determining the probabilities for these possibilities

A1: Getting them all correct (do not penalise lack of explanation of denominator
(a + b + c)3 if already penalised earlier; follow through if not all of the
possibilities are correct)

A1 cso: Deducing stated probability

M1: Listing possibilities for all three the same and determining their probabilities

A1 cao: Deducing probability (not necessarily simplified); do not penalise again
if (a+ b+ c)3 not justified

M1: Deducing an inequality connecting the two numerators such as
a2c+ b2c > 2abc

M1 (dep): Applying the inequalities to the expressions for the probabilities

A1: Deducing the inequality 3(a2b+ · · · ) > 18abc

[The last three marks may be gained for using other valid approaches to proving
inequalities, such as using Muirhead’s Inequality]

A1 cso: Deducing the result about the probabilities (may be implied by earlier
comments or argument)
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Question 13

I seat n boys and 3 girls in a line at random, so that each order of the n+ 3 children is as
likely to occur as any other. Let K be the maximum number of consecutive girls in the
line so, for example, K = 1 if there is at least one boy between each pair of girls.

(i) Find P(K = 3).

There are two equivalent ways to approach this question: either to regard the boys and
girls as all distinct, so that there are (n + 3)! possible orders, or to regard all boys as
indistinguishable and all girls as indistinguishable, so that there are

(
n+3

3

)
possible orders.

We use the latter approach here.

We note that, regarding the boys as indistinguishable and the girls as indistinguishable,
there are (

n+ 3

3

)
=

1

6
(n+ 3)(n+ 2)(n+ 1)

possible arrangements of the students.

If K = 3, this means that all three girls are adjacent. So the situation must be that there
are r boys, followed by 3 girls, followed by n − r boys, where r = 0, 1, . . . , n, so there are
n+ 1 possibilities.

Thus

P(K = 3) =
n+ 1

1
6
(n+ 3)(n+ 2)(n+ 1)

=
6

(n+ 2)(n+ 3)
.

Marks

M1: Argument for total number of permutations of boys and girls (either
distinguishable or indistinguishable)

A1 cso: Either correct total for indistinguishable count, or if deduced (n + 3)!
distinguishable arrangements, then deducing that need to multiply the n+ 1
indistinguishable possibilities below by 3!n!

B1: K = 3 means that all the girls are adjacent

M1: Correct approach to counting the number of possibilities

A1 cao: Deducing there are n + 1 possibilities (if counting distinguishable
permutations, need to multiply all counts by 3!n! = 6n!; this will make
things a lot more difficult, though)

A1 cao: Correct probability (allow equivalent expressions)

(ii) Show that

P(K = 1) =
n(n− 1)

(n+ 2)(n+ 3)
.
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Approach 1: Counting explicitly

To have K = 1, we must have each pair of girls separated by at least one boy, like this:

B. . . B︸ ︷︷ ︸
r1

G B. . . B︸ ︷︷ ︸
r2

G B. . . B︸ ︷︷ ︸
r3

G B. . . B︸ ︷︷ ︸
r4

where r1 > 0, r2 > 0, r3 > 0, r4 > 0 and r1 + r2 + r3 + r4 = n.

If r1 and r2 are fixed, then we must have r3 + r4 = n− (r1 + r2), so we can have r3 = 1, 2,
. . . , n− (r1 + r2), giving n− (r1 + r2) possibilities for r3 and r4.

Thus, if r1 is fixed, r2 could be 1, 2, . . . , n− r1− 1 (but not n− r1, as we must have r3 > 0).
Thus the number of possibilities for a fixed value of r1 is given by

n−r1−1∑
r2=1

(n− r1 − r2) =

n−r1−1∑
r2=1

(n− r1)−
n−r1−1∑
r2=1

r2

= (n− r1 − 1)(n− r1)− 1
2
(n− r1 − 1)(n− r1)

= 1
2
(n− r1 − 1)(n− r1)

= 1
2
(n2 − 2nr1 + r2

1 − n+ r1).

Now, r1 can take the values 0, 1, 2, . . . , n − 2 (as we need r1 > 0 and r2 > 0), giving the
total number of possibilities as

n−2∑
r1=0

1
2
(n2 − 2nr1 + r2

1 − n+ r1)

=
n−2∑
r1=0

1
2
(n2 − n)− 1

2
(2n− 1)

n−2∑
r1=0

r1 + 1
2

n−2∑
r1=0

r2
1

= 1
2
(n− 1)(n2 − n)− 1

2
(2n− 1) · 1

2
(n− 2)(n− 1) + 1

12
(n− 2)(n− 1)(2n− 3)

= 1
12

(n− 1)
(
6(n2 − n)− 3(2n− 1)(n− 2) + (n− 2)(2n− 3)

)
= 1

12
(n− 1)(6n2 − 6n− 6n2 + 15n− 6 + 2n2 − 7n+ 6)

= 1
12

(n− 1)(2n2 + 2n)

= 1
6
n(n− 1)(n+ 1).

Thus we can finally deduce

P(K = 1) =
1
6
n(n− 1)(n+ 1)

1
6
(n+ 3)(n+ 2)(n+ 1)

=
n(n− 1)

(n+ 2)(n+ 3)
.

Approach 2: A combinatorial argument

We have to place each of the three girls either between two boys or at the end of the line,
and we cannot have two girls adjacent. We can think of the line as n boys with gaps between
them and at the ends, like this:

B B . . . B B

STEP I 2009 Mark Scheme July 13, 2009 Page 45 of 47



Note that there are n+ 1 gaps (one to the right of each boy, and one at the left of the line).
Three of the gaps are to be filled with girls, giving

(
n+1

3

)
= 1

6
(n+1)n(n−1) ways of choosing

them. Therefore

P(K = 1) =
1
6
(n+ 1)n(n− 1)

1
6
(n+ 3)(n+ 2)(n+ 1)

=
n(n− 1)

(n+ 2)(n+ 3)
.

Approach 3: Another combinatorial argument

We add one more boy at the right end of the line. In this way, we have a boy to the right of
each girl, as follows:

B. . . B︸ ︷︷ ︸
r1

GB B. . . B︸ ︷︷ ︸
r2

GB B. . . B︸ ︷︷ ︸
r3

GB B. . . B︸ ︷︷ ︸
r4

where this time, we have r1 > 0, r2 > 0, r3 > 0 and r4 > 0. Also, as there are now n + 1
boys, we have r1 + r2 + r3 + r4 = n+ 1− 3 = n− 2.

So if we think of GB as one ‘person’, there are n− 2 boys and 3 GBs, giving n+ 1 ‘people’
in total. There are

(
n+1

3

)
= 1

6
(n+ 1)n(n− 1) ways of arranging them, giving

P(K = 1) =
1
6
(n+ 1)n(n− 1)

1
6
(n+ 3)(n+ 2)(n+ 1)

=
n(n− 1)

(n+ 2)(n+ 3)
.

Marks

Approach 1:

M1: Explicitly writing out line of boys and girls and naming number of boys in
each section

M1: Conditions on ri (inequalities and sum with some justification)

M1: Fixing r1 and r2, and determining the number of possibilities for r3 and r4
M1: Fixing r1 and summing over all possibilities for r2
A1: Determining the number of possibilities for fixed r1
M1: Summing over all possibilities for r1 and splitting the sum into sums which

can be calculated

M1: Simplifying the resulting expression

A1 ft: Simplified expression

A1 cao: Determination of P(K = 1)

Approach 3:

M1: Adding extra boy at the end for a useful purpose

M1 (dep): Writing out line in form shown (i.e., with GB combinations)

M1: Condition that all ri > 0

M1: Determination of r1 + r2 + r3 + r4
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M1: Regarding GB as one person to be able to use standard binomials to count
possibilities

M1: Counting possibilities using binomial coefficient

A1 ft: Correct binomial coefficient

M1: Determining P(K = 1)

A1 cao: Correct P(K = 1)

(iii) Find E(K).

We could attempt to determine P(K = 2) directly, but it is far easier to note that K can
only take the values 1, 2 or 3. Thus

P(K = 2) = 1− P(K = 1)− P(K = 3)

=
(n+ 2)(n+ 3)− n(n− 1)− 6

(n+ 2)(n+ 3)

=
n2 + 5n+ 6− n2 + n− 6

(n+ 2)(n+ 3)

=
6n

(n+ 2)(n+ 3)
.

Since E(K) =
∑

k k.P(K = k), we can now calculate E(K):

E(K) = 1.P(K = 1) + 2.P(K = 2) + 3.P(K = 3)

=
n(n− 1) + 2 · 6n+ 3 · 6

(n+ 2)(n+ 3)

=
n2 − n+ 12n+ 18

(n+ 2)(n+ 3)

=
n2 + 11n+ 18

(n+ 2)(n+ 3)

=
(n+ 2)(n+ 9)

(n+ 2)(n+ 3)

=
n+ 9

n+ 3
.

Marks

M1: Determination of P(K = 2) either via method given above or otherwise

A1: Correct P(K = 2)

M1: Correct expression for E(K) in terms of P(K = k)

A1 ft: Substituting in expressions for P(K = k)

A1 cao: Determination of E(K), not necessarily fully simplified
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